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Abstract—Edge computing and storage have been proposed
as an alternative to current cloud computing infrastructures to
address the latter’s limitations. However, edge computing ser-
vices and support for applications based on edge infrastructures
are still in the incipient stages. There are numerous storage
services for efficient data storage in the cloud. In contrast, few
such services exist at the edge. We look at the performance of
a cloud storage service Cassandra when deployed on an edge
network.

In this paper, we analyze Cassandra’s performance in three
different networks. We vary Cassandra’s attributes and the
overall conditions in each network to simulate a real-world
scenario and study the effect on the total time taken for
a particular request. We (a) establish trends for different
configurations, (b) discuss the reasoning behind them, and (c)
suggest optimal configurations for the networks used, which are
important for deploying Cassandra in an edge setting.

Index Terms—cloud storage, edge computing, performance
analysis

1 Introduction
In recent years, we have seen a rise in data moving from

datacenters to the network edge, inculcating a new paradigm
called edge computing [21]. It is a distributed information
technology architecture in which client data is processed at
the network’s periphery, as close to the originating source
as possible. Rather than transmitting raw data to a central
datacenter for processing and analysis, that work is performed
where the data is generated – whether that’s a retail store, a
factory floor, a sprawling utility, or a smart city. Only the
result of that computing work at the edge, such as real-
time business insights, equipment maintenance predictions
or other actionable answers, is sent back to the primary
datacenter in the cloud.

Many applications, such as real-time video processing,
augmented/virtual reality gaming, and environment sensing,
benefit from such decentralized, close-to-user deployments
where low-latency and real-time results are expected [18]
[19]. With the rise of edge, the research community has
started questioning the general applicability of emerging
software and services designed for cloud computing, such as,
augmented reality and industrial IoT. The primary motivating
bottleneck is the rather long end-to-end cloud access latency
due to the limited and sparse deployment of datacenters
across the globe [1].

Charyyev et al. [1] evaluated the current state of cloud
connectivity globally and concluded that most of the world’s
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population could access a cloud facility within 100ms. Low
latency devices can function efficiently only in continents
such as the US and Europe, where cloud provider datacenters
are abundant. Extensive datacenter deployment is necessary
to make cloud access latencies consistently compatible with
the requirements of next-generation applications, especially
for Asia, South America, and Africa. An alternative to this
expensive solution of constantly building new datacenters,
is edge computing, where full-fledged datacenters are not
mandatory to ensure low latency.

To draw parallels to large cloud datacenters, we chose
NoSQL which is used for managing and storing large
databases. Apache Cassandra is an open-source, distributed
NoSQL database used for handling large amounts of data
across multiple servers [16]. It provides high availability
without a single centralized point of failure since it consists
of a network with hundreds of nodes. One key component
of Cassandra’s architecture is replication. Using replication,
each data item is replicated at N hosts, where N is the
replication factor. This scheme allows datacenters to handle
certain node failures without any particular outage affecting
the user [16]. We chose to use Cassandra due to its highly
distributed nature, similar to an edge network that focuses on
a decentralized architecture. The general network architecture
for an edge Cassandra network is illustrated in Figure 1.
We will not be simulating the cloud network as we want to
focus on only the edge network’s performance for distributed
storage systems.

Figure 1: Edge Cassandra Architecture



We aim to analyze the unique challenges and issues posed
by edge networking to cloud-based storage services. In
our work, we start with understanding and quantifying the
impact edge networking has on the workings of Cassandra
by evaluating its performance. We present data and analyze
it by comparing inputs to Cassandra parameters, such as
replication.

2 Related Work
Database solutions for the edge have been primarily focused
on satisfying the needs of IoT infrastructure. Billions of
deployed IoT devices generate zettabytes (ZB) of data [10]
[11]. This proliferation of data, mainly consisting of time
series, poses new challenges for data collection, processing,
storage, and analysis. In the cloud, we have more than half a
dozen key-value storage, file systems, and database services
to efficiently store data and the runtime state of applications.
However, no such service exists at the edge yet .

Although existing databases can process large-scale time-
series data streams on cloud-based infrastructure, they are not
well designed to run on edge nodes with limited hardware
resources, power budget, and scalability [12]. EdgeDB and
VergeDB are two database solutions that were proposed to
serve these needs. VergeDB is an edge-based system that
can rapidly ingest data from sensors while optimizing for
compression, aggregation, and filtering based on the needs
of a downstream analytics consumer [13]. EdgeDB is a time
series database that can store and query massive time-series
data streams on edge nodes. The database is desired to
have several necessary capabilities, including high insertion
throughput, high write performance, low query response time,
and low resource requirement. Other research projects have
targeted the edge’s storage, such as PathStore, a database for
a path computing platform [14] and C-SPOT, which couples
FaaS function invocation with a persistent storage [15].

Despite these solutions, a quantitative evaluation of stor-
age concerns at the edge is still missing. Before building
another database for the edge, we decided to observe how
a popular cloud database such as Cassandra would perform
on edge. We achieve this by varying network performance
characteristics and substituting different Cassandra attributes
such as replication factor to determine whether an entirely
new storage system is actually needed.
Evaluation and benchmarking of different cloud storage
systems has been a source of inspiration for our work. There
have been several papers that contain NoSQL database com-
parison and performance analysis. Cassandra has been bench-
marked using Yahoo! Cloud Serving Benchmark (YCSB)
[23], which is often used to compare the relative performance
of NoSQL database management systems, by Barata and
Bernardino [6] on one and three-node clusters. An extensive
evaluation of a cloud storage system on an edge network is
still missing. Further, it has also been evaluated using dif-
ferent data partitioning strategies, such as RandomPartitioner
and ByteOrderedPartitioner, but for a single consistency level
of one for the experiments [7]. Comparison of Cassandra

against other databases, such as MongoDB, also uses static
values for replication factor and consistency level across their
experiments [8].

Furthermore, the article [9] assesses Cassandra’s scala-
bility; considering the factors of workload, data size, and
the number of simultaneous sessions, they increase only the
number of nodes. The study shows that increasing only the
number of nodes does not guarantee performance improve-
ment and that Cassandra manages the simultaneous requests
of threads well.

Hence, it is important to understand and evaluate
Cassandra’s performance for different configurations within
the same node setup to optimize it for particular networks.

3 Setup of Simulation
3.1 Cassandra

We chose Cassandra as our storage solution due to a
number of reasons outlined below. Most importantly, it
is not dependent on a single centralized server, i.e, it is
decentralized and fulfills the needs of an edge network. It
also provides strategies that allow the data to be nearer to
the users, one of the core concepts involved in edge storage
systems.

The smallest component of Cassandra is called a node,
where the object data is stored. A datacenter is a group of
nodes configured within a cluster for the replication. And,
a cluster is the outermost storage container that contains
one or more datacenters. Cassandra uses a gossip protocol
to keep data consistent between all the different nodes in
the cluster. It is a peer-to-peer protocol that runs periodically
every second and exchanges messages with up to three nodes
in the cluster. This way, every node knows where an object
is without sending extra messages requesting a particular
object’s location.

Furthermore, replicas of each object are stored on multiple
nodes to ensure reliability and fault tolerance. The total num-
ber of replicas stored is referred to as the Replication Factor
(RF). We vary this parameter throughout our experiments.
The replication strategies offered include SimpleStrategy and
NetworkTopologyStrategy [24]. SimpleStrategy is used for
a single datacenter and places the first replica on a node
determined by the partitioner. NetworkTopologyStrategy is
preferred for a multiple datacenter deployment and it lets us
define how many replicas we want in each datacenter. We
use SimpleStrategy for our experiments.

Finally, another attribute, Cassandra’s Consistency Level
(CL) is the minimum number of Cassandra nodes that must
acknowledge a read or write operation before it can be
considered successful. The CL is always less than or equal to
the RF for a particular configuration. It provides a trade-off
between object access times and its reliability. For a high CL,
more acknowledgements are required for a particular request
which increases the total access time. In contrast for a low
CL, the data is stored at fewer nodes which compromises
reliability.



3.2 Continuum
Continuum is a deployment and benchmarking framework

for the edge continuum developed at VU Amsterdam [17]. It
automates setting up and configuring emulated cloud, edge,
and endpoint hardware and networks. Further, it manages
the installation of the software inside the emulated environ-
ment and can perform benchmarks as well. The execution
consists of three phases – infrastructure, installation, and
benchmarking. In our research, we have used it solely for
the deployment of edge nodes. It is to be noted that the
benchmarking features of the continuum are not being used
because it is still under active development. Alternatively, we
have written Python scripts to evaluate Cassandra manually.
The framework uses the following software.

• KVM Kernel-based Virtual Machine (KVM) is an open-
source virtualization technology built into Linux. It lets
us turn Linux into a hypervisor that allows a host
machine to run multiple isolated virtual environments
called virtual machines (VMs).

• Libvirt This is an open-source management tool for
managing platform virtualization. The virsh console uses
the interface provided by libvirt to interact with the
VMs.

• QEMU This is a free and open-source emulator. It
emulates the machine’s processor and provides a set of
different hardware and device models for the machine,
enabling it to run a variety of guest OSes.

• Ansible An open-source software that provides a frame-
work used to automate IT operations. This is used to in-
stall the required software, such as, Docker, Kubernetes,
and KubeEdge, on the VMs.

This framework is open-source and available on Github [17].

4 Methodology of Measurement
We consider an edge network containing a cluster of nodes

that also run Cassandra as their primary distributed storage
system. The configuration consists of k edge nodes (k =
3, 4, or 5) and a single endpoint. All these devices are
run on QEMU virtual machines with appropriate changes
being made to the Cassandra .yaml configuration file. This
simulates a scenario wherein a user (the endpoint) writes
data to its database, distributed between the k edge nodes.
A JSON file that contains the sample testing data objects is
parsed and passed as parameters to a Cassandra query. The
DataStax Python driver for Cassandra helps create scripts to
execute these queries for write operations to the database.

There are four control parameters – latency, packet loss,
RF. and the number of nodes in the topology. These will
be changed throughout our experiment to test Cassandra’s
performance.

4.1 Latency
We explore the effects of changing latencies between

the edge nodes. tcconfig, a Linux traffic control command
wrapper, adds delays between the different edge nodes and

between a node and the endpoint. Network latencies are a
good replacement for geographical distances. A user may be
at different geographical locations while accessing the edge
database. Network impairments such as network congestion,
packet losses, and retransmission result in latency fluctuations
[3]. In addition to these, increasing latency also has a
considerable effect on the TCP throughput [2]. Understanding
the impact of link latency on Cassandra’s performance in an
edge-based data storage layout is crucial. We increase the
values up to 100ms as a majority of the world’s population
can access a cloud facility within that time [1].

4.2 Packet Loss
Packet loss is another fundamental network metric affect-

ing network application performance. Hence, it is critical to
understand the trends and impact of packet loss on distributed
applications and storage systems [5]. We use tcset, a com-
mand of tcconfig, to add packet loss to particular interfaces
and emulate real-life scenarios. Ideally, 0-1% packet loss is
acceptable for the majority of the applications. The quality
is significantly affected when the packet loss reaches values
above 5% which means the network’s performance has highly
degraded [20]. Keeping these ranges in mind, we chose the
packet loss values as (a) Low = 0.5%, (b) Medium = 2.5%,
and (c) High = 7.5%.

4.3 Replication Factor
Our third control parameter is RF. Every k-node cluster

can have RF values between 1 to k, and we use all possible
combinations. Further, CL provides a trade-off between ob-
ject access times and its reliability. Its default value is defined
by the LOCAL QUORUM , which equals (RF/2) + 1. We
will take these values defined by the cluster for each RF.

4.4 Node scalability
Ideally, an application requires Cassandra to consist of

more than three nodes for storage. In this experiment, we
increase the number of nodes to four and then five and
repeat the latency and packet loss experiments. This is done
to compare the results from the previous experiment and
establish a trend when increasing the nodes in the topology.
Extra nodes are deployed using the Continuum framework,
and all the VMs in our experiment are equal in performance
and storage to maintain uniformity.
By varying the input parameters, we measure the time taken
by Cassandra to finish a thousand write requests. The request
raised by the endpoint reaches any node in the cluster, which
then acts as the coordinator node for that request. According
to the nature of the request, it either reads or writes to
several nodes specified by the consistency level and the hash
function, which determines how data is distributed across
the nodes in the cluster. After the coordinator node receives
an acknowledgment from all the involved nodes, it forwards
the appropriate response to the endpoint. The time taken
from sending the request to receiving the response by the
endpoint is indicative of Cassandra’s performance.
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Figure 2: Average performance for a write
request in a 5-node cluster with high packet

losses. RF2 shows relatively worse performance.
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5 Results
We observe several trends while plotting the graphs for

different configurations and infer the following.

5.1 RF2 Anomaly
Figure 2 shows the RTT of a write request in a 5-

node cluster with high packet loss. The legend denotes the
different RFs possible and the latency between each edge
node increases along the x-axis. We can infer that an RF
of 2 (RF2) results in the worst performance compared to
other replication factors under a 5-node setup and high packet
loss. RF2 performed similarly to others under low (Figure
3) and medium packet losses, in contrast to high packet
loss. The difference between RF2 and the others gradually
increases, indicating that RF2 highly depends on packet loss.
Formulating a median line for each replication factor in the
graph shows us that the slope of the RF2 line is more
significant than any other slope. Consequently, as the latency
between the nodes increase, the performance of Cassandra
under RF2 worsens more quickly than any other replication
factor. Similar behavior is observed in the 3 and 4-node
clusters. All these observations lead to the conclusion that
RF2 should be used only in networks with low to medium
packet loss.

5.2 RF5 performance
For a high packet loss 5-node cluster, from Figure 2,

RF5 gives the best performance. Interestingly, this suggests
that the RF should be increased if a network worsens. This
is contrary to the intuitive thinking that in this scenario,
increasing the RF would simply lead to more overall requests,
more packet drops, and, consequently, worse performance.
The performance improves and can be attributed to how
Cassandra returns write acknowledgment packets. Hence, the
maximum RF for a 5-node cluster is best for bad network
conditions. This behavior is explained in detail in Section 6.
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Figure 3: Average performance for a write
request in a 5-node cluster with low packet

losses. RF1 exhibits least RTT.
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5.3 RF1 performance
Figure 3 shows that setting the cluster configuration to

RF1 gives the best performance in a 5-node cluster with a
low packet loss network. The 3-node and 4-node setups under
the same network conditions indicate that RF1 performs best.

However, as mentioned above, using RF1 compromises
data availability, which might result in some data loss. An
RF of 1 means a single copy of the data is maintained. So,
if the node with the data fails, the information is lost. This is
not a reliable configuration in a production environment and
should be used only when the user can afford to lose data.

For low packet loss, RF1 shows the best performance in all
the clusters. However, as packet loss increases, RF1’s perfor-
mance degrades faster than other RFs, eventually matching
or surpassing them. We can observe this in Figure 2, where
for the high packet loss 5-node cluster, RF1’s slope is similar
to RF3, RF4, and RF5. Similar trends are observed in the
other clusters as well.

5.4 Increasing number of nodes without sac-
rificing performance

Taking the standard deviation of the average RTT for the
3,4,5-node clusters, we found that this value is <1.5ms for
any link latency. Based on this observation, we can conclude
that when the Cassandra cluster is in RF3 configuration, it
performs the same across all numbers of nodes irrespective
of packet loss. If the cluster is set to RF3, the database
administrator can increase the number of nodes in the cluster
and expect the same performance irrespective of the network
conditions.

5.5 Optimal replication factor
Taking the median for different packet losses, RF3, RF4,

and RF5 show similar performance, as shown in Figure 4. If
one is hosting Cassandra on a cloud service such as Google
Cloud or AWS, where they are not aware of the exact network
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Figure 4: Performance of the average of RF3,
RF4, and RF5 in terms of packet losses.

RF > 2 show similar performance.

Low
Med
High

conditions (namely packet loss), for consistent performance,
they should prefer RF > 2 for these clusters. RF1 shows
better performance but comes at the cost of only storing data
in 1 node, which is especially dangerous if that node fails in
the cluster. RF > 1 ensures reliability and fault tolerance.

6 Discussion
The specific behavior of certain RFs can be attributed to

how Cassandra distributes and manages requests sent by the
endpoint. The DataStax Python Driver uses the RoundRobin-
Policy as the default load-balancing policy. This ensures that
the endpoint evenly distributes queries across all nodes in
the cluster, regardless of what datacenter the nodes may be
in. Verifying this with traffic inspection, we can confidently
say that, for a 5-node cluster, each node will act as the
coordinator 200 times for a total of 1000 write requests.
Additionally, Cassandra distributes data across the cluster
using a Consistent Hashing algorithm. A partitioner is a
function that determines how data is distributed across the
nodes in the cluster. It is used to derive a token representing
a row from its partition key using the abovementioned
algorithm. Each row of data is then distributed across the
cluster according to the token’s value.

Defining Pnc as the probability that one of the nodes
containing the data is not the coordinator node, and Pc as the
probability that one of the nodes containing is the coordinator
node. ρx total are the number of acknowledgment requests
the coordinator node sends out, and ρx ack are the number of
acknowledgments that it needs according to the consistency
level in the cluster, where x can be nc or c depending on the
scenario. We can say

ϕ = Pnc(ρnc ack/ρnc total) + Pc(ρc ack/ρc total)

where ϕ is the ratio of packets required for the acknowledg-
ment to the total requests sent by the coordinator. The

Figure 5: 5-node cluster topology

higher that ϕ is, the more impact packet loss has on the total
RTT for a single request. We’ll take an example from the
5-node cluster as shown in Figure 5.

For RF2, suppose that the data is to be written in E3
and E4. The probability of any other node becoming the
coordinator is 0.6 since 3 out of 5 nodes are left. The
coordinator will send two write requests and expect two
acknowledgments back, as CL2 is the default for this configu-
ration. If E3 or E4 (probability 0.4) becomes the coordinator,
it will only send and expect one acknowledgment back from
the other node. The other acknowledgment is not required as
the coordinator node can retrieve the data from itself. In this
case, ϕ = 0.6(2/2) + 0.4(1/1) = 1, which is the maximum
value possible. ϕ will stay the same not just for E3 and E4,
but for any combination of 2 nodes.

In contrast, when the cluster employs RF4, we can assume
the data is to be written in E1, E2, E3, and E4. The
probability of any other node (only E0 is possible) becoming
the coordinator is 0.2. Even though the CL is 3, E0 will
send write requests to all other 4 nodes but will expect ac-
knowledgments back from 3 of them. The other case remains
similar, where the coordinator node sends write requests to
the other 3 nodes and only expects acknowledgments from
two of them. Here, ϕ = 0.2(3/4) + 0.8(2/3) = 0.68, which
is lower than the ϕ for RF2.

Excluding RF1, as the coordinator node may in some cases
directly respond to the endpoint, in our 3, 4, and 5-node
clusters, the ϕ for RF2 is always one, as shown in Table
2. This explains the unusually high RTT for RF2 across
these clusters. Increasing the packet loss gives the cluster
little room for error since every dropped packet results in the
coordinator node sending the request for acknowledgment
again, increasing the total time for the write request.

RF 3-node 4-node 5-node
2 1 1 1

3 0.5 0.54 0.56

4 - 0.66 0.68

5 - - 0.5

Table 1: ϕ for different node clusters



7 Conclusion
We analyzed the workings of a cloud storage database

on an edge setup under various networking circumstances.
There have been many attempts to build a database suitable
for the edge however we decided to step back and test
an existing popular cloud storage system on a simulated
edge setup. We used the Continuum framework to deploy
an endpoint node and Cassandra on multiple edge nodes
and recorded the average RTT taken by write requests,
which gave us information about the database performance
in different configurations and network conditions.

Using graphs, we established trends for certain settings and
proposed an explanation for the anomalies encountered. We
also identified the best-performing configurations for 3, 4,
and 5-node clusters and recommended particular configura-
tions according to network conditions. In our future work, we
aim to extend and establish a pattern for a cluster containing
any number of nodes.
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