
CS 8903: Real-time Darknet Detection

Dhruv Rauthan

May 1, 2024

1 Introduction

A network telescope passively monitors traffic destined for Internet address space that is not
assigned to any hosts but is advertised to the global routing system. Most modern network
telescopes monitor statically assigned address spaces, and MORP4 is a novel ’dynamic’
network telescope, which allows real-time changes to the unused dark address space. This
special problem sets out to answer 3 major questions with respect to MORP4:

1. Comparison with existing alternatives: Can other firewall-based alternatives replicate
MORP4’s behavior? Are there any limitations?

2. Incorporating monitoring of IPv6 addresses: Can IPv6 address monitoring be inte-
grated into MORP4? What is the most efficient way to do so?

3. Performance enhancement of the controller: Can MORP4’s performance be improved
for controller operations?

2 IPFW

2.1 What is ipfw?

ipfw is FreeBSD’s free open-source stateful firewall with additional functionalities such as
traffic shaping, packet scheduling and in-kernel NAT [1]. More specifically, it achieves
keeping state of IP flows by using dynamic rules, and offers the option of logging packets
which match a rule. It can log packets up to a user-defined threshold. We should also note
that this firewall checks rules sequentially starting from the rule with the lowest sequence
number. ipfw is a potential alternative for MORP4 which, however, has limited capabilities
and requires modifications. We now briefly describe how ipfw works, the changes that we
introduced to the module and how we would configure it to serve the same purpose as
MORP4.

1

2.2 How does it work?

For each monitored prefix, we add a stateful rule in the ipfw ruleset defined in ipfw.rules.
When ipfw observes an outgoing packet from an address within a monitored prefix, it first
checks if the packet has an existing state in the ipfw dynamic state table. If such a state
does not exist, then it creates a unique one using the 5-tuple (protocol, source address,
destination address, source port and destination port) of the outgoing packet. Note that
this matches both incoming and outgoing packets as they will have the same 5-tuple for a
persistent connection. If however, a match is found, it executes the action associated with
the parent rule which generated this dynamic rule, otherwise it moves to the next rule.

For example, in Listing 1, which is the ipfw.rules file that we used, the monitored
prefixes are 11.0.0.0/24 and 12.0.0.0/24. A lower rule number is assigned to the rule
containing the ’check-state’ action, allowing ipfw to first check if the packet belongs to an
existing dynamic state. If it doesn’t find a match, it moves on to the next sequential rule
number, which allows an outgoing packet to go through and simultaneously stores its state
in the dynamic state table using the ’keep-state’ action. The next time ipfw encounters
an outgoing packet, matching one of the dynamic states, it will execute the action of the
parent rule, which in this case is allowing the packet to go through. This stateful rule
thus creates a new dynamic rule permitting traffic towards that address. If the packet is
incoming, i.e, towards a monitored prefix, ipfw drops and logs the packet. Finally, the last
rule allows all packets which are not to or from a monitored prefix.

1 #!/bin/sh

2 ipfw -q -f flush

3

4 cmd="ipfw -q add"

5 pif="em0"

6

7 # check state for existing connections

8 $cmd 0002 check -state

9

10 # outgoing packet

11 $cmd 0004 allow ip from 11.0.0.0/24 to any keep -state

12 $cmd 0005 allow ip from 12.0.0.0/24 to any keep -state

13

14 # new incoming packet

15 $cmd 0006 deny log ip from any to 11.0.0.0/24

16 $cmd 0007 deny log ip from any to 12.0.0.0/24

17

18 $cmd 1000 allow ip from any to any via $pif

Listing 1: The ipfw.rules file

2.3 What changes did we make?

We modify this behavior by editing the ipfw kernel source files so that now, instead of
matching packets with the 5-tuple, the dynamic rule now matches packets according to

2

only the destination address (for an incoming packet) or source address (for an outgoing
packet) instead. This required modifications to the dynamic state addition and lookup
methods in ip fw dynamic.c. As ipfw calculates and stores the hash of the 5-tuple, changes
were made so that now the hash is only calculated according to the single stored address.

Additionally, we reset the dynamic rule expiry timer to To when an outgoing packet
is observed, by changing the variables handling the lifetime of dynamic states. When the
timer for a state expires, that dynamic state is deleted from the state table, meaning that
the address is considered inactive again. When inactive, any packets destined towards that
address will be logged according to the lower priority rule set earlier in Listing 1.

Testing the correctness of this implementation was done using Scapy, by generating and
sending packets for 4 cases, as listed in Table 1.

Flow of packets Expected behavior

Outgoing packet from an IP address belonging to
a monitored prefix
Then an incoming packet to the same IP address.

Not logged

Outgoing packet from an IP address belonging to
a monitored prefix
Then an incoming packet to another IP address in
the same prefix.

Not logged

Outgoing packet from an IP address belonging to
a monitored prefix
Then an incoming packet to an IP address in an-
other monitored prefix.

Logged

Incoming packet to an IP address in a monitored
prefix.

Logged

Table 1: Different scenarios with ipfw

These described rule expiry and logging mechanisms are similar to the ones implemented
in MORP4.

2.4 Drawbacks

This implementation has a few drawbacks.

1. IP Spoofing This solution is not resilient to IP spoofing attacks. A malicious actor
could send a packet with a spoofed source address within a monitored prefix to invoke
the creation of a dynamic state, which would permit all inbound traffic towards that
address.

3

2. Limited dynamic states ipfw stores a structure corresponding to each dynamic
rule in a hash table. The number of buckets for each entry in the table is set to
8192 by default, and drastically increasing it would result in memory concerns due
to under-utilization of entries in the table. Alternatively, we keep the number of
buckets as the default, which would result in very long lists associated with each
bucket, degrading performance during lookup. Both methods have clear drawbacks,
since in the worst case we are looking at storing rules for all the addresses in each
monitored prefix.

3. Multiple ingress/egress paths In case a network has multiple ingress or egress
points, this implementation becomes even more complicated. According to MORP4’s
implementation, when a switch processes an outgoing packet that updates the state
of an address to active for the current time bin, it creates a special control packet
to send to all the other switches so that they apply the same modification. This
operation is executed at line-rate using the cloning and multicast mechanisms of
the programmable switches. However, ipfw does not offer such functionalities, as it
is a straightforward firewall mechanism used to filter and log packets according to
user defined rules. Hence, we would need to add another custom module for the
notification procedure. We could build a controller script that regularly checks the
dynamic rules of ipfw and upon detection of a new rule, it creates and sends a control
packet to each other deployment of ipfw in the network to indicate that that address
is active. This is not an optimal solution, since even if the controller retrieves the
ipfw ’s rules frequently, there would still be much greater delay in notifying the other
ipfw ’s compared to MORP4 which multicasts control packets at line rate. That could
lead to unwarranted packet logging and consequently privacy violation of the network
users.

2.5 Discussion

MORP4 definitely achieves higher accuracy and speed than an ipfw -based alternative tele-
scope, especially with respect to user data privacy. Additionally, the ipfw solution requires
significant changes to the kernel configuration files, making it a comparatively worse choice
to dynamically detect dark addresses in a network.

3 IPv6

Currently, MORP4 can only store upto 222 addresses in each register array (table), allowing
monitoring of only 222 addresses at a time. For a /10 prefix, this means that all addresses
can be monitored (upto /32 granularity). However, these Tofino switch storage limitations
means that for a /32 prefix, IPv6 addresses can only be stored for a maximum of /54
granularity. For Tofino-2 the maximum size of a stateful object decreases, allowing us to
have multiple tables of smaller sizes. We increase the number of tables by 4, allowing
monitoring at a maximum granularity of /56.

4

3.1 Bloom Filters

Bloom filters are space efficient probabilistic data structures used to check for set member-
ship. A bloom filter will always return yes if an item is a set member. However, the bloom
filter might still return yes although an item is not a member of the set (a false positive).
Bloom filters only support addition and set membership testing, they do not allow deletion
of elements. Ideally the false positive rate should be as low as possible as we do not want
to log legitimate user packets in MORP4.

For sets with large number of members, such as IPv6 addresses, bloom filters have an
extremely high false positive rate, as shown in Figure 1. If only 0.1% of 232 addresses
are active at any point in the network, the false positive rate is close to 30% which is
undesirable.

Figure 1: False positive rate for Bloom Filter storing IPv6 addresses

Furthermore, due to the lack of deletion of individual elements for bloom filters we can-
not remove dark addresses without resetting the entire bloom filter. Again, this behaviour
not optimal as we do not want to classify other dark addresses as active when the status
of a particular address changes from dark to active.

3.2 Cuckoo filters

Cuckoo filters are another probabilistic data structure used to check whether an element is
a part of a set or not. Similar to bloom filters, cuckoo filters have the possibility of false
positives but do not allow any false negatives, i.e, they do not classify any active addresses

5

as dark. Cuckoo filters have an advantage over bloom filters as they also support deletion
of items from the set.

However, cuckoo filters only perform better than bloom filters for a few billion entries
or fewer [2]. Aiming to store 234 entries would result in a high false positive rate as shown
in Section 3.1.

4 C++

The current MORP4 controller code is written in Python. Python, being an interpreted
language, is significantly slower as compared to a compiled language like C++. Convert-
ing the existing controller code to C++ would lead to performance improvements when
retrieving and updating the status of addresses in the Tofino switches. This was done using
BareFoot Runtime APIs, which provided libraries for table operations.

4.1 What changes did we make?

In addition to the classes below, we add functionalities for parsing command-line arguments
and setting the initial parameters of the controller accordingly. Themainmethod initializes
the switch context variables, BFRT session variables, and connects to the switch software
via gRPC. When the program finishes running, it frees up the allocated memory and stops
the session.

4.1.1 Register

This class defines a register data structure to store register arrays defined in the switch.
Both global table and flag table are defined as an instance of this class. The class methods
are described as:

• read from sw: Enables reading from Tofino software.

• start sync: Starts register synchronization.

• end sync: Ends register synchronization.

• reg sync cb: Synchronizes register callback.

• read data(start index, end index): Reads data from the register array between
2 indices and returns a 2-dimensional vector array.

• write data(list of keys, value): Sets a particular value for all the passed keys
(register indices).

6

4.1.2 MonitoredTable

It defines the monitored table which contains the list of monitored prefixes defined by the
network operator. It has only 1 method, which is used to add the monitored prefixes to
the switch table:

• add entry(prefix, length, base index, mask, dark base index): Converts the
prefix and length strings to 32 bit integers, sets them as the key for the table and
adds the other values as the data value to the table.

4.1.3 PortsTable

This class is used to define an instance of the ports table, which sets the incoming and
outgoing ports of the switch. The class has 2 methods:

• set action id(direction): Sets the table’s action ID as incoming or outgoing de-
pending on the argument passed.

• add entry(port, direction): Adds the port as the key and the empty action ID
according to the direction to the ports table.

4.1.4 Meter

Meters are used for measuring and controlling the rate of incoming traffic, and are helpful
in rate limiting logging in Tofino. This class is used for defining 2 instances, dark meter
and dark global meter, and has the following method:

• add entry(average packet rate, maximum packet rate, index): Sets the key
value as the index, and the average packet rate, maximum rate, average allowed as
100 and maximum allowed as 100 as the data for the meter table entry.

4.1.5 LocalClient

This is largest and most important class in the program. It is used to define instances of
all the classes mentioned previously, and executes methods associated with each class ac-
cordingly. It handles the entire logic of the controller. A few major functions are described
as:

• setup: Initializes instances of all the classes, and performs basic operations such as
populating the monitored table and setting the packet rates.

• parse monitored(file path): Takes the file path where the network operator has
defined the prefixes they want to monitor, opens the file and returns the list of
monitored prefixes as strings.

7

• populate monitored(list of prefixes): Iterates all entries in the monitored pre-
fixes. It extracts the mask, length and the monitored prefix string, and converts them
into integers. These values along with the current base index are added to the mon-
itored table. All IP addresses in this prefix are then added to a list which maintains
the index to prefix mapping. The base index is incremented according to the number
of IP addresses in that prefix.

• add ports(ports): Adds the incoming and outgoing ports to the ports table accord-
ingly per the map passed to it.

• set rates: Simply sets the dark global meter rates.

• update rates(inactive prefixes, inactive addresses): Calculates the average and
maximum packet rates and adds an entry for that inactive prefix/address in the dark
meter.

• run: The ’brain’ of the program, this method runs as a loop every To period and
performs logical operations relating to the updation of global table and flag table in
the switch. To improve performance, registers are updated in batches of 105 at a
time.

4.2 Discussion

Porting the codebase from Python to C++ increased performance significantly and reduced
request times. With Python, it took 5 minutes for an iteration to complete. This was
reduced to 40 seconds with C++, an 86% improvement. MORP4 operators can now read
and write switch tables and register entries much faster than before, allowing faster updates
to the status of addresses as ’dark’ or ’active’.

5 Conclusion

Throughout the course of the special problem, we worked on enhancing MORP4’s features
and performance. Potential alternatives to MORP4, such as ipfw were implemented and
compared to the existing solution. We identified difficulties in the implementations as well
as potential drawbacks of the alternative. For incorporating IPv6 addresses, we showed that
probabilistic data structures, bloom and cuckoo filters, would be impossible to implement
while maintaining a low false positive rate for identification of dark addresses. Finally, we
programmed the controller in C++, which significantly improved MORP4’s performance
overall.

8

References

[1] Ipfw description. https://docs.freebsd.org/en/books/handbook/firewalls/

#firewalls-ipfw. Accessed: 2024-04-29.

[2] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo
filter: Practically better than bloom. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies, CoNEXT ’14, page
75–88, New York, NY, USA, 2014. Association for Computing Machinery.

9

https://docs.freebsd.org/en/books/handbook/firewalls/#firewalls-ipfw
https://docs.freebsd.org/en/books/handbook/firewalls/#firewalls-ipfw

	Introduction
	IPFW
	What is ipfw?
	How does it work?
	What changes did we make?
	Drawbacks
	Discussion

	IPv6
	Bloom Filters
	Cuckoo filters

	C++
	What changes did we make?
	Register
	MonitoredTable
	PortsTable
	Meter
	LocalClient

	Discussion

	Conclusion

