
Covert Communication in Software Defined
Wide Area Networks

Undergraduate Thesis

Submitted in partial fulfillment of the requirements of

BITS F421T Thesis

By

Dhruv Rauthan

ID No. 2019A7TS0095G

Under the supervision of:

Prof. Stefan Schmid

&

Prof. Vinayak Naik

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, GOA CAMPUS

December 2022

http://www.bits-pilani.ac.in/

Declaration of Authorship

I, Dhruv Rauthan, declare that this Undergraduate Thesis titled, ‘ Covert Communication in

Software Defined Wide Area Networks ’ and the work presented in it are my own. I confirm that:

⌅ This work was done wholly or mainly while in candidature for a research degree at this

University.

⌅ Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

⌅ Where I have consulted the published work of others, this is always clearly attributed.

⌅ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

⌅ I have acknowledged all main sources of help.

⌅ Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Dhruv Rauthan
13 December 2022

Certificate

This is to certify that the thesis entitled, “ Covert Communication in Software Defined Wide Area

Networks ” and submitted by Dhruv Rauthan ID No. 2019A7TS0095G in partial fulfillment of

the requirements of BITS F421T Thesis embodies the work done by him under my supervision.

Supervisor

Prof. Stefan Schmid

Professor,

TU Berlin

Date:

Co-Supervisor

Prof. Vinayak Naik

Professor,

BITS-Pilani Goa Campus

Date:

ii

Dhruv Rauthan
13 December 2022

Dhruv Rauthan
13 December 2022

Dhruv Rauthan

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, GOA CAMPUS

Abstract

Bachelor of Engineering

Covert Communication in Software Defined Wide Area Networks

by Dhruv Rauthan

Software defined wide area networks (SD-WANs) have become increasingly popular in recent years

due to their ability to provide e�cient and secure communication across large geographical areas.

However, the use of SD-WANs also presents potential security risks, including the possibility

of developing covert channels between network hosts for malicious purposes. We analyse an

open-source SD-WAN implementation, and investigate possible avenues for developing a covert

timing channel in SD-WANs. We achieve this through surveying existing SD-WAN architectural

literature and inspecting network tra�c during simulations replicating specific network events.

Our findings highlight the need for further research in this area to better understand the security

implications of SD-WANs.

http://www.bits-pilani.ac.in/

Acknowledgements

I would like to express my sincere gratitude to Prof. Stefan Schmid and Dr. Liron Schi↵ for

giving me the opportunity to work with them and most of all for their guidance, feedback and

encouragement. They were extremely supportive throughout the entirety of my work. I would

also like to thank Prof. Vinayak Naik for his support and feedback. Last, but not least, I would

like to thank my family for supporting and encouraging me endlessly.

iv

Contents

Declaration of Authorship i

Certificate ii

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions . 1

1.3 Thesis Structure . 2

2 Background 3

2.1 Software Defined Networking . 3

2.1.1 SDN Architecture . 3

2.1.2 APIs . 4

2.2 Software Defined-Wide Area Network . 5

2.2.1 Why SD-WAN? . 5

2.2.2 SD-WAN Architecture . 7

2.3 flexiWAN . 7

2.3.1 flexiWAN Architecture . 8

2.3.1.1 flexiEdge . 8

2.3.1.2 flexiWAN Agent . 9

2.3.1.3 flexiManage . 9

2.3.2 Routing . 10

v

Contents vi

2.3.3 Tunnels . 10

3 Exploring Covert Channels in SD-WAN 12

3.1 Branch Authentication . 12

3.2 Tunnel Reconfiguration . 13

3.3 flexiWAN . 13

3.3.1 Setup . 14

3.3.2 Experiment and Observations . 14

3.4 VXLAN . 16

4 Discussion 17

4.1 Exploring Potential Covert Channels . 17

4.2 Limitations and Future Work . 18

5 Related Work 19

5.1 SD-WAN Security . 19

5.2 Covert Channels in SDNs . 19

5.3 Open-Source SD-WAN Implementation . 20

6 Conclusion 21

Bibliography 22

List of Figures

2.1 SDN in (a) planes, (b) layers, and (c) system design architecture. 4

2.2 WAN Reference Scenario . 6

2.3 SD-WAN Reference Scenario . 6

2.4 flexiWAN High Level Block Diagram . 8

2.5 flexiWAN OSPF configuration . 10

2.6 An example of a flexiWAN tunnel network . 11

3.1 The network topology . 14

3.2 Periodic TLS/TCP packets exchanged with flexiManage 15

3.3 Router L’s logs after router G2’s disconnection 16

vii

List of Tables

3.1 Network configuration . 15

viii

Abbreviations

SDN Software Defined Networking

IP Internet Protocol

WAN Wide Area Network

SD-WAN Software Defined-Wide Area Network

API Application Programming Interface

REST REpresentational State Transfer

LAN Local Area Network

MPLS MultiProtocol Label Switching

CPE Customer Premises Equipment

VPP Vector Packet Processing

FRR Free Range Routing

OSPF Open Shortest Path First

RIP Routing Information Protocol

BGP Border Gateway Protocol

JSON JavaScript Object Notation

CLI Command-Line Interface

URL Uniform Resource Locator

UI User Interface

IPSec Internet Protocol Security

UDP User Datagram Protocol

GRE Generic Routing Encapsulation

MTU Maximum Transmission Unit

ZTP Zero Touch Provisioning

VM Virtual Machine

ARP Address Resolution Protocol

ix

Abbreviations x

MAC Media Access Control

NTP Network Time Protocol

ESP Encapsulating Security Payload

Chapter 1

Introduction

With the advent of large scale network infrastructures, SDN was introduced to provide a more

flexible and agile way to manage and control network tra�c. Traditional networks are often

inflexible and di�cult to manage, requiring manual configuration of individual devices and

making it di�cult to quickly adapt to changing network conditions. As it is a relatively new

technology (which is already a part of an estimated 30% of the world’s IP WAN tra�c [31]),

there exists massive potential for security loopholes for attackers to exploit. Hence, the discovery

and understanding of such security issues, such as covert channels is essential for the protection

of sensitive data and the integrity of an organization’s network. Covert channels can be used

by attackers to secretly exfiltrate data, undermining security and potentially leading to overall

network and information damage. Detecting and preventing their use is crucial for maintaining

the confidentiality, integrity, and availability of sensitive information.

1.1 Problem Statement

Timing covert channels in SD-WANs present a potential security vulnerability that can be

exploited by attackers to exfiltrate sensitive information from the network or to exchange

information between hosts. The objective of this thesis is to identify the presence of timing

covert channels in SD-WANs and to present e↵ective methods for detecting and mitigating these

channels.

1.2 Contributions

This thesis analyses the possibility of covert channels in an open-source SD-WAN implementation.

First, we look at the various components which construct the working of an SD-WAN. In an

1

Chapter 1. Introduction 2

e↵ort to identify methods to develop a covert channel, we analyse new branch authentication

methods employed by SD-WAN solutions (both vendor deployed and in SD-WAN architectural

paradigms). The second avenue we explore is tunnel reconfigurations in the network, particularly

during network device disconnection. Unfortunately, we were unable to develop a covert channel

using either of these methods, however we observe and conclude certain points related to the

functioning and operation of an SD-WAN implementation, which include the nature of status

updates exchanged between the network devices.

1.3 Thesis Structure

Chapter 2 goes through the networking paradigms such as SDN and SD-WAN which are used

in our research. The architecture and implementation of an open-source SD-WAN solution is

also discussed here. Chapter 3 explores the branch authentication approach and the reports the

results of the experiments involved with the tunnel reconfiguration method. Chapter 4 discusses

the findings from the previous chapter, addresses the limitations of our work and proposes a

future direction for the covert channel research. Chapter 5 discusses previous research on the

topics covered in this thesis. Finally, Chapter 6 wraps up all the thesis with some final remarks.

Chapter 2

Background

2.1 Software Defined Networking

SDN is a type of computer networking architecture that uses a centralized controller to manage

network tra�c and make decisions about where data should be sent [18]. This is in contrast to

traditional networking architectures, which rely on individual network devices to make routing

decisions based on local information.

In terms of how SDN works, the key idea is that the controller is responsible for making global

decisions about where data should be sent. This allows the network to be more dynamic and

flexible, because the controller can quickly respond to changes in network conditions and adjust

the routing of data accordingly.

For example, if a particular network link becomes congested, the controller can use its global

view of the network to find an alternative path for the data to take. This can help to improve

network performance and reduce the risk of congestion.

2.1.1 SDN Architecture

The architecture of an SDN system typically consists of several key components. The first is

the controller, which is a central server that is responsible for making global decisions about

network tra�c. This controller typically communicates with the other network devices using a

northbound API, which allows it to send commands and receive information from these devices.

The other key components of an SDN architecture are the network devices themselves, which are

typically referred to as ”switches” in this context. These devices are responsible for forwarding

data packets according to the instructions they receive from the controller. In an SDN system,

3

Chapter 2. Background 4

these switches are often programmable, which means that they can be configured to perform a

wide range of functions in response to commands from the controller.

SDN separates the data and control planes in network devices, and generally contains a total of

3 logically separate planes:

• Data plane: network infrastructure consisting of the hardware/software devices (routers,

switches etc.). They only di↵er from a traditional IP network in that they do not have any

control functions.

• Control plane: the SDN controller. The controller takes care of the management and

control functions of the network.

• Application plane: the SDN applications. It uses the above two planes to maintain the

logic for the network of applications.

Figure 2.1 gives an overview of these 3 planes.

Figure 2.1: SDN in (a) planes, (b) layers, and (c) system design architecture. [25]

One of the key benefits of an SDN architecture is that it allows network administrators to manage

and control the network more easily and flexibly than they can with a traditional network. This

is because the controller provides a single, centralized point of control for the entire network.

This makes it easier to implement new network policies, change the way the network is configured,

and troubleshoot problems when they arise.

2.1.2 APIs

Northbound and Southbound

Chapter 2. Background 5

Communication between the planes takes place through the Northbound and Southbound APIs.

The Northbound API connects the control plane to the management, i.e, application plane. This

can be achieved using REST APIs, which allow the SDN application to control and manage

the network by sending control instructions to the controller. The Southbound API translates

these instructions and sends them to the network devices. This enables the controller to send

commands to the network devices as well as receive information from them regarding their status

etc. This is generally achieved using OpenFlow protocol APIs. [18]

Eastbound and Westbound

In contrast to the above, the Eastbound and Westbound APIs enable communication horizontally,

i.e, between controllers and are an essential component of distributed controllers. These APIs

are leveraged to create more scalable and distributed network control platforms. A particular

SDN methodology [16] distinguishes between them both, by handing SDN to SDN protocols

to the Westbound interfaces and management of communication with legacy networks to the

Eastbound interfaces.

2.2 Software Defined-Wide Area Network

A WAN is a type of network that spans a large geographic area, such as a country or continent.

WANs typically connect multiple smaller networks, such as LANs, and allow devices on these

networks to communicate with each other. A SD-WAN is a type of network architecture that

allows for the management and operation of a WAN through the use of SDN principles.

2.2.1 Why SD-WAN?

Although MPLS can be used to guarantee quality of service, it presents some challenges, such as:

• High bandwidth cost, MPLS is more expensive than Internet services which only supports

best-e↵ort mechanism

• Configuration overhead, zero-touch deployments are not possible, each device is configured

separately

• Time required to transition/upgrade: operation time is directly related with the number of

branch o�ces and edge devices.

The high cost of MPLS is pushing companies to use Internet/broadband services [27].

Chapter 2. Background 6

Figure 2.2: WAN Reference Scenario [24]

Figure 2.3: SD-WAN Reference Scenario [24]

Figure 2.2 shows an example of a traditional WAN scenario, where an organization owning

several branches needs to interconnect them with the main o�ce. With the advent of cloud,

enterprises have started outsourcing their applications and using Software-as-a-Service (SaaS)

and Infrastructure-as-a-service (IaaS) from multiple cloud providers. Figure 2.3 highlights the

connectivity needs of the SD-WAN customers. It is clear from the figure above that the hub-and-

spoke communication model of traditional WANs (shown in Figure 2.2) was not designed with

these concepts in mind and cannot meet the needs of today’s digital businesses [24]. The user

experience is poor, due to the large number of links increasing network tra�c congestion, or

cost for maintenance is not sustainable. By adapting WAN solutions in the form of software-

defined, enterprises have many advantages, such as better network performance, automation on

networking deployment, cost reduction and expedited service delivery [28]. SD-WAN’s ability to

Chapter 2. Background 7

optimize network tra�c in real-time, flexibility, scalability and enhanced security has led to its

adoption by vendors such as Cisco [3], Palo Alto Networks [22] and Juniper Networks [17].

2.2.2 SD-WAN Architecture

SD-WAN architecture is similar to SDN; having 3 planes: data, control and orchestration [25].

• Data plane: It is designed to simplify communication between geographically separated

sites, as well as with cloud applications and services. SD-WAN creates its own software

logical infrastructure, i.e, the overlay network, over the physical infrastructure, i.e, the

underlay network. Since a WAN is made up of several separate entities, there might be

di↵erences in physical infrastructure used. The overlay can create a uniform and consistent

network, by using links or tunnels between sites.

• Control plane: Similar to SDN, this manages the control logic for the network. There

may be one or several controllers used at once. This layer is responsible for controlling

the configuration of the connected devices, while the CPE is connected to the controller

by the southbound API. The programming of the control instructions is done by sending

instructions from the orchestration plane through the northbound API.

• Orchestration plane: This plane is broadly used; for enforcing policies, configuration,

monitoring, performance analysis, troubleshooting etc. The entire SD-WAN service is

managed at this level of abstraction. Through SD-WAN application interfaces, it uses the

northbound API to send instructions to the controller(s) and receive information as well.

2.3 flexiWAN

SD-WAN has been widely adopted by major routing and networking vendors. These companies

often o↵er a monolithic software stack that controls every aspect of the solution, making it

di�cult for customers to have control over their deployment and future costs. This traditional

business model can lock customers into using a specific vendor’s solution.

flexiWAN is an alternative solution to this issue, by providing an open-source SD-WAN infras-

tructure that includes the vRouter, management, orchestration, automation and core networking

functionality [2].

Chapter 2. Background 8

2.3.1 flexiWAN Architecture

flexiWAN consists of 2 major entities, namely flexiEdge, a software edge network device, and

flexiManage, the central orchestration/management system. [9].

Figure 2.4: flexiWAN High Level Block Diagram [9]

Figure 2.4 outlines flexiWAN architecture. Communication between the flexiEdge device and

flexiManage takes place through a secure encrypted API. flexiManage, part of the SD-WAN

orchestration plane, provides management and configuration of the flexiEdge network devices as

well as provides network statistics. Network administrators can use flexiManage as a central

point of control for all flexiEdge devices [9].

2.3.1.1 flexiEdge

Every flexiEdge device is composed of 3 entities:

• Router infrastructure: This is a modified version of FD.io’s VPP [30]. FD.io is a

networking technology used to build network functions, an open-source networking data

plane [5]. VPP, the underlying technology behind FD.io, helps achieve this by allowing

low latency, multiple packet processing. Improving scalability, this is a crucial component

of the SD-WAN implementation.

• Routing control plane: The control plane is managed by FRR. FRR is an open-source

IP routing suite for network devices and provides implementation of protocols such as

OSPF, RIP and BGP [12]. SD-WAN’s control plane is handled by FRR.

Chapter 2. Background 9

• flexiWAN Agent: This component connects the flexiEdge device with the flexiManage

orchestrator using secure APIs. This is discussed in detail at 2.3.1.2.

flexiWAN provides a localhost UI for device onboarding, configuration and troubleshooting.

flexiEdge UI is enabled by default on all interfaces and it can be accessed using device IP and

port 8080 [6]. Every flexiEdge contains a system checker which verifies that the device can

run flexiWAN software. If any errors are present, the system checker can automatically change

particular software configurations to try and fix them.

flexiEdge can be installed through a pre-built virtual machine, bare metal appliance or the cloud.

To add a flexiEdge device to the SD-WAN, flexiWAN uses tokens. Adding the organization’s

unique token to the flexiEdge links the device to the flexiManage account.

2.3.1.2 flexiWAN Agent

flexiWAN Agent or flexiAgent is responsible for managing the communication between the

flexiEdge device and flexiManage. It uses a bi-directional secured web socket connection for

network configuration and statistics. It supports the following capabilities [8]:

• Receive simplified JSON commands from flexiManage.

• Separate and translate APIs into internal commands.

• Network configuration storage.

• Manage the execution sequence of various operations.

• Restoring the last system state and configuration after device reboot.

• Monitoring components and restart in case of failure.

• Provide a JSON structure of the entire configuration.

• Provide CLI commands for troubleshooting.

2.3.1.3 flexiManage

The flexiManage service is used for managing the flexiWAN network, configuring and connecting

to the flexiEdge devices. Users can create accounts to manage the entire network inventory

of the organizations using SD-WAN. A web URL provides a UI for flexiManage which can

be accessed. It collects statistics from devices using the analytics system and provides device

monitoring and regular status updates. Network administrators can manage the SD-WAN

Chapter 2. Background 10

through flexiManage, which is responsible for communicating with flexiEdge devices. It also

behaves as a communication channel between the network devices and the server.

The open-source backend component for flexiManage provides a REST API for SD-WAN

management [7].

2.3.2 Routing

Routing through the flexiEdge devices is managed by FRR, an open-source IP routing suite for

Unix-based network devices. flexiWAN allows addition of static routes, used for routing tra�c

through various network interfaces. Static routes can be redistributed to other sites connected

via tunnels through either OSPF or BGP.

For OSPF, the users can configure various OSPF parameters, such as Hello interval and Dead

interval, according to the network requirements. Figure 2.5 shows an OSPF configuration with

separate LANs.

Figure 2.5: flexiWAN OSPF configuration [10]

flexiWAN also provides BGP routing, which can be combined with OSPF as well.

2.3.3 Tunnels

SD-WAN uses tunnels to provide overlays on the transport layer underlay and are used to connect

multiple CPEs (LANs) into a larger network which is the SD-WAN itself [21]. They work by

encapsulating packets which allows for secure movement of data from one site to another.

flexiWAN uses encrypted IPSec over VXLAN tunnels to create its own tunnels [11]. The VXLAN

tunnel uses UDP, which wraps around an IPSec tunnel, which in turn wraps around a GRE

tunnel which contains the original packet. The tunnel headers, from outermost to innermost,

in order are VXLAN + UDP, IPSec, GRE, original packet header. flexiWAN o↵ers various

topologies such as hub and spoke, full mesh or a custom topology for tunnel creation. Using

OSPF and BGP, the LAN routes of the sites are advertised across tunnels, enabling cross

LAN communication. Several key encryption methods are available, for example, Pre-Shared

Key, Internet Key Exchange v2 and no encryption. Users can opt for path labels which help

Chapter 2. Background 11

organize and manage the network more e�ciently. Figure 2.6 provides a graphical overview of a

tunnel network between sites such as Tel Aviv, Berlin, Paris etc, which can be viewed through

flexiManage.

Figure 2.6: An example of a flexiWAN tunnel network [11]

However, there exist several issues with using tunnels in SD-WANs [21]. Adding headers during

packet encapsulation results in an overhead, which consequently causes ine�cient utilization of

the available bandwidth. Approximately 40% additional bytes are used for an IP packet, which

is generally not needed if sending the packet without encapsulation. Furthermore, multiple

encapsulations, as in the case of flexiWAN, leads to even more overhead, reaching up to 123%

in the worst case. If the links between the sites do not have su�cient bandwidth to carry the

encapsulated packet, the network can become congested and lead to a decline in performance

of applications dependent on the SD-WAN. It is crucial to have enough tunnel bandwidth for

smooth operation. The second issue plaguing tunnels is fragmentation. Encapsulation often

increases the packet size above the regular MTU size. This leads to increased fragmentation,

which has several negative e↵ects, including increasing computational work for the routers.

Scalability, according to the maximum number of tunnels supported by a router, and security,

including evasion of filters by tunneling, are some more issues faced during the implementation

of SD-WAN tunnels. Discussion about a tunnel-free SD-WAN is still ongoing [1] although most

popular vendors are yet to implement it.

Chapter 3

Exploring Covert Channels in

SD-WAN

We explored the implementation of proprietary and open-source SD-WAN solutions to examine

the network and architectural paradigms used. The aim was to exploit the timing of control plane

or general router communication to identify potential covert channels where hosts in di↵erent

LANs can exchange information between each other. Section 3.1 discusses the approaches taken

SD-WAN solutions to authenticate a new branch into the network. Section 3.2 goes over the

tunnel reconfiguration policies, with flexiWAN’s policies being discussed in detail in Section

3.3. Finally, Section 3.4 investigates security exploits in the VXLAN tunnels commonly used in

SD-WANs.

3.1 Branch Authentication

Branches, or LANs, in the SD-WAN are an important feature for network segregation and

organization. When a branch wants to be added to the network, it needs to be authenticated by

the manager first. This approach was inspired by the idea that during branch authentication,

the manager (or to put it more simply, the SD-WAN controller) might incur delays in handling

requests from other devices in the network, especially if a single processor is handling all internal

and external requests. For example, if a network device requesting information from the manager

sends its request packet at the same time as a new branch is trying to authenticate itself. In

this case, the device will observe an unnatural delay in receiving the response back, which is a

potential timing channel for exchanging binary information. Importantly, the new branch need

not be authenticated in the end, only the process of authentication needs to take place.

12

Chapter 3. Exploring Covert Channels in SD-WAN 13

Cisco’s SD-WAN uses ZTP for authenticating new devices [4]. ZTP is a method of setting up

devices, wherein a new device in the network is automatically configured, without the network

administrator manually approving each one. Cisco deploys a separate ZTP server in its SD-WAN

configuration that validates the device after confirming its serial number and root certificate.

Since the authentication server and the controller are not handled by the same processor,

authenticating a new device will not cause any delays in the network.

The MEF Standard for SD-WAN assumes that an agreement is already present between the

subscriber, the WAN who wants to become SD-WAN, and the service provider, who provides

software defined capabilities to the WAN [20]. The existing agreement between the two signifies

that the subscriber will provide the correct credentials for the entire network to the service

provider, leaving no room for an external branch trying to authenticate itself. Furthermore, no

algorithms or changes were mentioned for the provisioning of new devices of CPEs.

As discussed in Section 2.3.1.1, flexiWAN uses tokens for device authentication. The network

administrator has to create a token in the flexiManage portal and share it to the flexiEdge

device’s administrator to manually enter it in the configuration file. Here, addition of a new

device in the network becomes impossible without the token, which will only be sent to trusted

and verified entities. Other implementations also assumed mutual trust between the network

administrator and unauthenticated device, leaving no room for a potential exploit.

3.2 Tunnel Reconfiguration

SD-WAN uses tunnels to provide overlays on the transport layer underlay and are used to

connect multiple CPEs (LANs) into a larger network (Section 2.3.3). flexiWAN uses tunnels

to realise links between sites in the SD-WAN. Another open-source implementation also makes

use of GRE tunnels to connect the virtual CPEs in their network. Now, what if a tunnel or a

router goes down with malicious intent? Will the hosts or routers in other connected LANs be

made aware of the disconnection? Timing di↵erences between control plane messages sent by

the manager to the network devices about tunnel/router disconnection can be exploited to form

a timing channel. This will however, not be a very ’covert’ channel, since it involves a very noisy

disconnection of entire links or devices which might be reported to the network administrator

for suspicious activity. We explore this idea in flexiWAN in Section 3.3.

3.3 flexiWAN

We study the messages exchanged between the network devices during the disconnection of a

particular router, which leads to one or more tunnels going down. Section 3.3.1 goes over the

Chapter 3. Exploring Covert Channels in SD-WAN 14

network setup and Section 3.3.2 discusses the experiments carried out during router disconnection.

3.3.1 Setup

The setup consists of 3 flexiEdge devices (flexiEdge device and router are used interchangeably

here), namely, Liron (L), Google 1 (G1) and Google 2 (G2). Figure 3.1 gives an overview of

the topology. Router L is connected by a tunnel to both router G1 (Tunnel 1) and router

G2 (Tunnel 2). Additionally, router L is a flexiWAN VirtualBox image instance running on a

personal network, and both routers G1 and G2 are Ubuntu VMs, with the flexiWAN software

installed, hosted on Google Cloud. All the routers were deployed according to the instructions

given by flexiWAN [14]. A Linux end-host device is connected to both router G1 and G2, to test

network connectivity. They have the IP addresses of Table 3.1 shows the network configuration,

particularly the WAN and LAN subnets for each of the routers. Static routes were added in all

the routers to allow communication between the separate LANs. This topology was chosen to

observe if any messages about routing changes were sent by the manager to a router not directly

connected to the disconnected router. Packet capture is done using vppctl, a VPP command.

Figure 3.1: The network topology

3.3.2 Experiment and Observations

The experiments involve disconnecting router G2 and observing any configuration changes in

routers G1 or L due to control plane messages sent by the SD-WAN manager. The router

disconnection is achieved using both, shutting down the entire VM and stopping only flexiWAN’s

Chapter 3. Exploring Covert Channels in SD-WAN 15

Router WAN subnet LAN subnet Tunnel Interface(s)

L 10.0.0.6/24 192.168.1.1/24 10.100.0.4, 10.100.0.6

G1 10.190.0.2/32 10.4.1.2/32 10.100.0.7

G2 10.160.0.2/32 10.3.1.2/32 10.100.0.5

Table 3.1: Network configuration

virtual router running on the VM. Shutting down the VM directly leads to Tunnel 2’s status

showing Not Connected and this takes a few minutes to update in the flexiManage portal.

Analysing tra�c capture on router G1, there is no direct communication between it and router

G2, which is expected since they are not connected by a tunnel. All messages go through router

L (both Tunnel 1 and Tunnel 2) to reach either side.

Figure 3.2: Periodic TLS/TCP packets exchanged with flexiManage

The packets observed during regular communication were:

• From Figure 3.2, we can observe that router G1 exchanges encrypted TCP segments with

flexiManage almost every 10 seconds. These are periodic status updates messages to check

the router functionality and to send information regarding important network events.

• As OSPF was the chosen routing protocol for communication between the LANs, OSPF

Hello Packets were exchanged periodically to maintain connectivity with the router’s

neighbours (in this case, router G1’s neighbour will be router L).

Chapter 3. Exploring Covert Channels in SD-WAN 16

• ARP packets were exchanged to discover and match the tunnel endpoint IP with the MAC

addresses.

• NTP packets were used to synchronise time between the network devices.

• ESP is a part of the IPSec set of protocols used for encryption of data. These are the

actual tunnel packets exchanged between routers G1 and L. The level of encapsulation

goes in order from Ethernet II, IP, UDP, VXLAN, Ethernet I, IP, ESP. This matches the

order discussed in Section 2.3.3. All communication between the routers occurs through

packets encapsulated using ESP.

After disconnecting router G2, router L keeps sending ESP packets to the other Tunnel 2

endpoint (10.100.0.5). It receives no reply from router G2, but uses keepalives to check for

router G2’s status in case it comes online again. Once router G2 reconnects, it identifies it

has a tunnel configured and sends an initial ESP packet to router L, which resumes normal

communication. Importantly, there is no special communication from flexiManage to either

router L or G1 regarding G2’s status. Even when static routes are configured for G2’s LAN, the

other routers do not know if that LAN is accessible anymore.

However, from Figure 3.3, the logs where we can verify the periodic status updates to flexiManage,

it can be observed that the flexiAgent present on router L identifies the status of Tunnel 2 as

Not Connected and according changes the router configuration, by removing the static routes

and rebuilding the Linux interfaces cache. Further, Tunnel 2’s status changes to Down in

further status updates to flexiManage. Interestingly, router G1 receives no message from its own

flexiAgent to remove the static routes to router G2’s LAN subnet.

Figure 3.3: Router L’s logs after router G2’s disconnection

3.4 VXLAN

As flexiWAN uses VXLAN tunnels to create links between sites (Section 2.3.3), if a channel can

be developed in general VXLAN tunnels, that concept can be extended to SD-WAN who use

these tunnels. Due to time constraints, only a normal SDN network with VXLAN tunnels to

connect CPEs could be set up on Mininet. No experiments were carried out in this configuration.

Chapter 4

Discussion

4.1 Exploring Potential Covert Channels

We looked at open-source and proprietary SD-WAN architectures and implementations in an e↵ort

to identify potential timing covert channels that present a security vulnerability. The problem

was approached from multiple angles, the two major approaches being branch authentication

and tunnel reconfiguration.

During new branch authentication for an SD-WAN, none of the SD-WAN implementations

observed had a singular processor handling internal network requests and external branch

authentication requests simultaneously. The authentication of new branches in most cases was

through mutual trust and verification by the SD-WAN administrator, through the addition of

tokens or a pre-existing agreement between the entities. There was no possibility of developing a

covert channel in this network scenario.

In Section 3.3.2, it was observed that no extra communication was made to other devices in

the network to indicate and update them regarding particular LANs that might be unavailable

due to disconnection. Only through a regular ping, can other devices deduce the status of the

disconnected router. Furthermore, only a router which is directly connected to the disconnected

router, has information regarding its status, and only because of the tunnel status communicated

to it by the flexiAgent.

Other SDN covert channel implementations make use of MAC spoofing [23]. This approach

is simply not possible here since routes in the SDN flow tables are installed based on the IP

subnet of the LAN, instead of MAC addresses. Additionally, the IP subnets cannot be spoofed

as flexiWAN does not allow its virtual router to start if the LAN subnet matches with any other

subnet in the network. It is important to note that flexiWAN is just an orchestrator, i.e, it just

17

Chapter 4. Discussion 18

enforces network policies, configurations etc. It does not behave as an SDN controller, and does

not manage the control logic for the network.

4.2 Limitations and Future Work

Although we were not able to develop a timing covert channel in an SD-WAN, we analysed

di↵erent SD-WAN solutions to try and develop a covert channel. The assumption of the SD-WAN

manager sending status update messages to all network devices was flawed as its function was very

di↵erent as compared to a normal SDN controller, from which we had initially drawn parallels

to. The experiments with flexiWAN confirmed this. Even if messages were sent regarding router

disconnection, it would not have been a very ’covert’ channel as a major network device is

down, which will attract the attention of the network administrator. Furthermore, technical

bugs with flexiWAN’s software at the time led to obstacles in setting up the Google Cloud VMs

due to subnetting issues. The future direction of this work can take the form of analysis of

vulnerabilities in VXLAN tunnels. As these tunnels are commonly used in SD-WAN software,

there will be fewer assumptions in the problem statement and a potentially successful result can

be applied to not only SD-WAN tunnels but generic routing tunnels as well.

Chapter 5

Related Work

5.1 SD-WAN Security

Varuna and Vadivel discuss SD-WAN security trends, including DoS attacks, flow of conflict

rules, improving middleboxes, security policies and data encryption [29]. However, they do not

mention the possibility of existing side channels in SD-WAN allowing communication between

hosts without the knowledge of the controller. Another SD-WAN security checklist only mentions

secure connectivity, deployment and segmentation [32]. Previous research does not cover covert

communication in SD-WAN. Additionally, the implementations mentioned in Section 5.3 only go

through basic encryption methods, and do not provide countermeasures against other forms of

security exploits.

5.2 Covert Channels in SDNs

A solution proposing a timing covert channel in SDNs uses malicious switches which can fabricate

messages triggering the SDN mobility capability, and resulting in the reconfiguration events

at certain switches [26]. Another covert channel makes use of malicious switches exploiting

the OpenFlow handshake for establishing covert channels [19]. Le et al. designed an SDN

covert channel enabling both host-host and switch-switch communication. However, their

implementation assumes that the attacker can install certain applications on the SDN controller

itself. Finally, Macchiato improves on these approaches and identifies a covert channel for SDNs

between any 2 isolated network devices, removing the need for a malicious switch [23]. This is

achieved via MAC spoofing, wherein a MAC learning application running on the SDN controller

performs flow reconfigurations post discovery of a new MAC address in the network. These

reconfigurations introduce measurable delays during forwarding of data and can be used to

19

Chapter 5. Related Work 20

transmit confidential information. We analyse similar approaches such as branch spoofing to

introduce delays in SD-WAN network requests.

5.3 Open-Source SD-WAN Implementation

As SD-WAN is a relatively newer technology, there were only a few open-source implementations

available. A broad architecture proposed by MEF outlines the policies and regulations to be

followed by both, the customer and the SD-WAN service provider [20]. Troia et al. proposed

an open-source SD-WAN implementation using GRE tunnels to realise links between sites.

flexiWAN, an industry level implementation, provided us with a good understanding of how

an SD-WAN manager functions and manages network devices. Both of these implementations

used VXLAN and/or GRE tunnels for connecting CPEs. ICONA is an interesting peer-to-peer

approach for SD-WANs, which distributes the load of the control plane between the network

entities [13]. It implements the SD-WAN by simply connecting di↵erent SDN controllers with

di↵erent LANs together, there is no central manager or orchestrator like flexiWAN does. This is

evident as they do not use tunnels to connect the various CPEs. A multi-controller SD-WAN

algorithm does incorporate request delays in the network, which can be investigated further to

establish timing channels [15], although again they do not mention which type of tunnels they

use to connect sites.

Chapter 6

Conclusion

SD-WAN will continue to be an important and widely-used technology in the coming years. As

more businesses adopt cloud-based services, the demand for SD-WAN will continue to grow.

Hence, it is crucial to understand security exploits in such networks. In an e↵ort to identify

and establish covert channels in SD-WANs, we looked at di↵erent SD-WAN architectures and

implementations, both proprietary and open-source. We understood the policies and regulations

used for network events. Our first approach, identifying timing di↵erences in network request

during new branch authentication, did not show any potential for a covert channel due to the

use of a separate server and pre-existing agreements between the branch and the manager. The

second approach involved tunnel reconfigurations, where if a tunnel goes down, the manager

would send network status updates to all other devices in the network. However, we observed

that the manager behaved unlike an SDN controller and wasn’t responsible for any such flow

reconfigurations. The future of this work involves investigating VXLAN tunnels, since they are

commonly used in SD-WAN implementations, and identifying any potential covert channels

there.

21

Bibliography

[1] 3 Reasons Why the Next Evolution of SD-WAN Will Be Tunnel-Free. url: https://

www.spiceworks.com/tech/networking/guest-article/3-reasons-why-the-next-

evolution-of-sd-wan-will-be-tunnel-free/ (visited on 08/12/2022).

[2] About flexiWAN. url: https://docs.flexiwan.com/overview/about.html (visited on

08/12/2022).

[3] Cisco SD-WAN. url: https://www.cisco.com/c/en_in/solutions/enterprise-

networks/sd-wan/index.html (visited on 08/12/2022).

[4] Cisco SD-WAN: WAN Edge Onboarding. url: https://www.cisco.com/c/dam/en/

us/td/docs/solutions/CVD/SDWAN/sdwan-wan-edge-onboarding-deploy-guide-

2020nov.pdf (visited on 09/12/2022).

[5] FD.io. url: https://fd.io (visited on 08/12/2022).

[6] flexiEdge UI. url: https://docs.flexiwan.com/flexiEdgeUI/overview.html (visited

on 08/12/2022).

[7] flexiManage. url: https : / / gitlab . com / flexiwangroup / fleximanage (visited on

08/12/2022).

[8] flexiWAN Agent. url: https://gitlab.com/flexiwangroup/flexiagent (visited on

08/12/2022).

[9] flexiWAN Architecture. url: https://docs.flexiwan.com/overview/architecture.

html (visited on 08/12/2022).

[10] flexiWAN Routing. url: https://docs.flexiwan.com/management/routing.html

(visited on 08/12/2022).

[11] flexiWAN Tunnels. url: https://docs.flexiwan.com/management/tunnels.html

(visited on 08/12/2022).

[12] FRR. url: https://frrouting.org (visited on 08/12/2022).

[13] Matteo Gerola et al. “Icona: A peer-to-peer approach for software defined wide area

networks using ONOS”. In: 2016 Fifth European Workshop on Software-Defined Networks

(EWSDN). IEEE. 2016, pp. 37–42.

22

https://www.spiceworks.com/tech/networking/guest-article/3-reasons-why-the-next-evolution-of-sd-wan-will-be-tunnel-free/
https://www.spiceworks.com/tech/networking/guest-article/3-reasons-why-the-next-evolution-of-sd-wan-will-be-tunnel-free/
https://www.spiceworks.com/tech/networking/guest-article/3-reasons-why-the-next-evolution-of-sd-wan-will-be-tunnel-free/
https://docs.flexiwan.com/overview/about.html
https://www.cisco.com/c/en_in/solutions/enterprise-networks/sd-wan/index.html
https://www.cisco.com/c/en_in/solutions/enterprise-networks/sd-wan/index.html
https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/SDWAN/sdwan-wan-edge-onboarding-deploy-guide-2020nov.pdf
https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/SDWAN/sdwan-wan-edge-onboarding-deploy-guide-2020nov.pdf
https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/SDWAN/sdwan-wan-edge-onboarding-deploy-guide-2020nov.pdf
https://fd.io
https://docs.flexiwan.com/flexiEdgeUI/overview.html
https://gitlab.com/flexiwangroup/fleximanage
https://gitlab.com/flexiwangroup/flexiagent
https://docs.flexiwan.com/overview/architecture.html
https://docs.flexiwan.com/overview/architecture.html
https://docs.flexiwan.com/management/routing.html
https://docs.flexiwan.com/management/tunnels.html
https://frrouting.org

Bibliography 23

[14] Google Cloud Platform. url: https://docs.flexiwan.com/guides/gcp.html (visited

on 09/12/2022).

[15] Xiaolan Hou et al. “Multi-controller deployment algorithm in hierarchical architecture for

SDWAN”. In: IEEE Access 7 (2019), pp. 65839–65851.

[16] Hoßfeld Tran-Gia Jarschel Zinner and Kellerer. “Interfaces, attributes, and use cases: A

compass for SDN”. In: IEEE Communications Magazine. 2014, pp. 210–217.

[17] Juniper SD-WAN. url: https://www.juniper.net/us/en/solutions/sd-wan.html

(visited on 08/12/2022).

[18] Verissimo Rothenberg-Azodolmolky Kreutz Ramos and Uhlig. “Software-Defined Network-

ing: A Comprehensive Survey”. In: Proceedings of the IEEE. 2014, pp. 14–76.

[19] Robert Krosche et al. “I DPID it my way! A covert timing channel in software-defined

networks”. In: 2018 IFIP Networking Conference (IFIP Networking) and Workshops. 2018,

pp. 217–225.

[20] MEF Standard SD-WAN Service Attributes and Services. url: https://www.mef.net/wp-

content/uploads/2019/07/MEF-70.pdf?id=122&fileid=file1 (visited on 09/12/2022).

[21] Mota. “Tunnel-Based versus Tunnel-Free SD-WANs”. In: (2020).

[22] Prisma SD-WAN. url: https://www.paloaltonetworks.com/sase/sd-wan (visited on

08/12/2022).

[23] Amir Sabzi et al. “Macchiato: Importing Cache Side Channels to SDNs”. In: Proceedings

of the Symposium on Architectures for Networking and Communications Systems. 2022,

pp. 8–14.

[24] Carmine Scarpitta et al. “EveryWAN - An Open Source SD-WAN solution”. In: 2021

International Conference on Electrical, Computer, Communications and Mechatronics

Engineering (ICECCME). 2021, pp. 1–7.

[25] P. Segeč et al. “SD-WAN - architecture, functions and benefits”. In: 2020 18th International

Conference on Emerging eLearning Technologies and Applications (ICETA). 2020, pp. 593–

599.

[26] Kashyap Thimmaraju, Liron Schi↵, and Stefan Schmid. “Outsmarting network security

with SDN teleportation”. In: 2017 IEEE European Symposium on Security and Privacy

(EuroS&P). IEEE. 2017, pp. 563–578.

[27] Maralit Troia Zorello and Maier. “SD-WAN: an Open-Source Implementation for Enterprise

Networking Services”. In: 2020 22nd International Conference on Transparent Optical

Networks (ICTON). 2020, pp. 1–4.

[28] Woo Uppal and Pitt. “Software-Defined WAN for Dummies”. In: (2015).

[29] W. Rose Varuna and R. Vadivel. Recent Trends in Potential Security Solutions for SD-WAN:

A Systematic Review. 2021.

https://docs.flexiwan.com/guides/gcp.html
https://www.juniper.net/us/en/solutions/sd-wan.html
https://www.mef.net/wp-content/uploads/2019/07/MEF-70.pdf?id=122&fileid=file1
https://www.mef.net/wp-content/uploads/2019/07/MEF-70.pdf?id=122&fileid=file1
https://www.paloaltonetworks.com/sase/sd-wan

Bibliography 24

[30] VPP Technology. url: https : / / fd . io / gettingstarted / technology/ (visited on

08/12/2022).

[31] What is SDN and where software-defined networking is going. url: https : / / www .

networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html?

page=2 (visited on 07/12/2022).

[32] Michael Wood. “Top requirements on the SD-WAN security checklist”. In: (2017).

https://fd.io/gettingstarted/technology/
https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html?page=2
https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html?page=2
https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html?page=2

	Declaration of Authorship
	Certificate
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.3 Thesis Structure

	2 Background
	2.1 Software Defined Networking
	2.1.1 SDN Architecture
	2.1.2 APIs

	2.2 Software Defined-Wide Area Network
	2.2.1 Why SD-WAN?
	2.2.2 SD-WAN Architecture

	2.3 flexiWAN
	2.3.1 flexiWAN Architecture
	2.3.1.1 flexiEdge
	2.3.1.2 flexiWAN Agent
	2.3.1.3 flexiManage

	2.3.2 Routing
	2.3.3 Tunnels

	3 Exploring Covert Channels in SD-WAN
	3.1 Branch Authentication
	3.2 Tunnel Reconfiguration
	3.3 flexiWAN
	3.3.1 Setup
	3.3.2 Experiment and Observations

	3.4 VXLAN

	4 Discussion
	4.1 Exploring Potential Covert Channels
	4.2 Limitations and Future Work

	5 Related Work
	5.1 SD-WAN Security
	5.2 Covert Channels in SDNs
	5.3 Open-Source SD-WAN Implementation

	6 Conclusion
	Bibliography

